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Abstract
We investigate a solution of the difference equation

tUA,B
n (t) = AU

A,B
n+1 (t) + BUA,B

n (t) + AU
A,B
n−1 (t) (	)

with the boundary conditions UA,B
0 = I , UA,B

−1 = 0, where A, B are Hermitian
elements of a C∗-algebra. UA,B

n are usually called generalized Chebyshev
polynomials of the second kind. The equation (	) cannot be easily simplified
as in the scalar case because A and B do not need to commute. However, we
are able to compute the spectrum of the corresponding orthogonality measure
which is very important for the investigation of the discrete Schrödinger operator
related to UA,B

n .

PACS numbers: 02.30.Gp, 02.30.Tb

Mathematics Subject Classification: 47B36, 47L90, 39A70

1. Introduction

The classical Chebyshev polynomials un(x) are defined as

un(x) = sin(n + 1)θ

sin θ
where x = cos θ.

They are known to satisfy the recurrence formula

xun(x) = 1
2un+1(x) + 1

2un−1(x).

Moreover they form an orthonormal basis of the space L2([−1, 1];µ) with the weight
dµ(x) = 2

π

√
1 − x2 dx supported on the interval [−1, 1].

Now let us denote by �2(N) the classical discrete Hilbert space of all sequences x =
(x0, x1, . . .) such that the series

∑∞
n=0 |xn|2 converges, and let {en} be its canonical orthonormal

basis, i.e. en = (0, . . . , 0, 1, 0, . . .) and 1 appear only in the nth position. On �2(N) we define
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the shift operator S by the formula (Sx)0 = 0 and (Sx)n = xn−1 for n � 1, i.e. the operator S
moves all elements of the sequence x to the right. In other words we have Sen = en+1.

The classical discrete Schrödinger operator is defined as J0 = S + S∗. Its spectrum is the
interval [−2, 2] and its spectral measure w is equal to dw (x) = 1

2π

√
4 − x2 dx.

Now with use of the polynomials un(2x) we are able to define Fourier analysis of the
Schrödinger operator. Exactly, an operator φ : �2(N) 
→ L2 ([−2, 2]; dw) defined on
basis {en} as φ(en) = un(

1
2x) is an isometric isomorphism of two Hilbert spaces �2(N) and

L2 ([−2, 2]; dw). This gives the correspondence φ ◦ J0 ◦ φ−1 = Mx , where Mx denotes
multiplication by x, i.e. (Mxf )(x) = xf (x). Moreover the spectrum σ(J0) is equal to the
support of the weight w(x).

In the following we will need an another tool: moments of the weight w. Denote them by
mn, i.e.

mn =
∫ 2

−2
xnw(x) dx. (1)

Hence we have

〈(J0)
ne0|e0〉 = 〈Mn

x φ(e0)|φ(e0)〉

=
∫ 2

−2
xnu0(

1
2x)

2 dw (x)

= mn.

In the scalar case we have a very simple generalization. Let a and b be real numbers, a > 0.
Now let us consider an operator Ja,b = a J0 + b Id, where Id denotes the identity operator on
�2(N). One can easily see that the corresponding L2 space is L2

(
[b − 2a, b + 2a], dwa,b

)
,

where dwa,b (x) = 1
2aπ

√
4a2 − (x − b)2 dx.

We can also consider the case a < 0 because of simple conjugation

M(−1)nJa,bM(−1)n = J−a,b

where M(−1)nen = (−1)nen.
Now a new question arises: what happens if a and b are elements of a more general

algebraic structure than R? For example, the matrix case was investigated in [5] and [7]. In
the following we present a more general approach.

2. Operator case

2.1. Preliminaries

Let A be a C∗-algebra. We will write A � 0 (or A > 0 respectively) if A is a positive definite
(or strictly positive respectively) Hermitian element of A, i.e.A∗ = A and σ(A) ⊂ [0,+∞) (or
σ(A) ⊂ (0,+∞) respectively). In the following the inequalityA � B (orA > B respectively)
will be equivalent to A − B � 0 (or A − B > 0 respectively) for A,B ∈ A.

Denote by �2(A) a space of sequences X = (X0, X1, . . .) of elements of A, for which
the series

∑∞
n=0 X

∗
nXn converges in the norm topology of the C∗-algebra A. We introduce an

‘A-scalar’ product1 on �2(A):

〈〈
X|Y 〉〉

�2 =
∞∑
n=0

Y ∗
n Xn ∈ A.

1 For more details regarding using the name ‘scalar’ in the case of the spaces �2(A) and L2($) we refer the reader
to [2].
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Of course, we have
〈〈
X|X〉〉

�2 � 0 in the same sense as before.
A system

En = (0, . . . , 0, I, 0, . . .)

where I , which denotes the identity of A, appears only in the nth position, forms an
‘orthonormal’ basis of �2(A).

In a similar way we can define an L2-space of square integrable A-valued functions. Let
$ be a positive A-valued Borel measure, i.e. $(&) is positive definite ($(&) � 0) for all
Borel subsets & ⊂ R. For A-valued functions F(x) and G(x) we define an ‘A-scalar’ product

〈〈
F |G〉〉

$
=

∫
R

F(x) d$ (x)G(x)∗ ∈ A.

Now the spaceL2($) consists of all A-valued functionsF(x) for which
〈〈
F |F 〉〉

$
is convergent

in the norm topology of the C∗-algebra A.
For more details we refer the reader to [1, 2]. A special case when A is a matrix algebra

C
N×N which is also of great interest to many authors, is presented in [3, 4, 6, 7].

2.2. A-valued Schrödinger operator

Let A,B ∈ �2(A) be Hermitian and let JA,B be an operator on �2(A) acting as follows:

(JA,BX)0 = BX0 + AX1 (JA,BX)n = AXn−1 + BXn + AXn+1.

Hence JA,B = BI + A(S + S∗), where S denotes the ‘shift’ on �2(A) and I—the identity
operator.

With JA,B there are associated A-valued Chebyshev polynomials of the second kind
UA,B

n (x), i.e. polynomials satisfying the recurrence formula

xUA,B
n (x) = AU

A,B
n+1 (x) + BUA,B

n (x) + AU
A,B
n−1 (x).

The case whereB is a Hermitian matrix andA a positive definite one was fully investigated
by Duran in [5].

Denote by Mn the nth moment of WA,B :

Mn =
∫

R

xn dWA,B (x) = 〈〈
xnI |I 〉〉

WA,B .

Theorem 1. Let WA,B be an A-valued measure which orthogonalizes polynomials UA,B
n , i.e.

〈〈
UA,B

n |UA,B
m

〉〉
WA,B =

∫
R

UA,B
n (x) dWA,B (x)UA,B

m (x)
∗ = δn,mI.

Then the moments Mn of the measure WA,B are equal to

Mn =
∫ 2

−2
w(t)(At + B)n dt. (2)

Moreover

suppWA,B =
⋃

t∈[−2,2]

σ(At + B).

Corollary 2. The spectrum of JA,B is equal to

σ
(
JA,B

) =
⋃

t∈[−2,2]

σ(At + B).

In the case when A = C
N×N and A is invertible, the spectrum σ(JA,B) consists of at most N

non-degenerate intervals of the real line R.
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Remark. The corollary covers the results of Duran (cf [5]).

Proof of the corollary. By theorem 2.4, chapter VII, [2] the spectrum of the operator JA,B

is equal to the support of the measure WA,B . The second statement of the corollary holds
because of the continuity of the spectrum. �

Proof of theorem 1. We have〈〈
xnI |I 〉〉

WA,B = 〈〈
(JA,B)

nE0|E0
〉〉
�2 .

Let

(B + Ax)n =
n∑

k=0

Ck,nx
n.

Then 〈〈
(JA,B)

nE0|E0
〉〉
�2 = 〈〈 (

BI + A(S + S∗)
)n

E0|E0
〉〉
�2

=
n∑

k=0

Ck,n

〈〈
(S + S∗)kE0|E0

〉〉
�2 .

On the other hand SEn = En+1, hence the behaviour of S is the same as that of the operator
S. But

〈〈
En|E0

〉〉
�2 = δn,0I = 〈en|e0〉I, so〈〈
(S + S∗)nE0|E0

〉〉
�2 = 〈(S + S∗)ne0|e0〉I.

From (1) we have

〈(S + S∗)ne0|e0〉 = mn =
∫ 2

−2
tnw(t) dt.

Hence

Mn =
∫ 2

−2
w(t)

n∑
k=0

Ck,nt
n dt

=
∫ 2

−2
w(t)(At + B)n dt

which proves the first part of the theorem.
Let

& =
⋃

t∈[−2,2]

σ(At + B).

From (2) we have that the equality∫
R

p(x) dWA,B (x) =
∫ 2

−2
w(t)p(At + B) dt (3)

holds for every polynomialp ∈ C[x]. We will now show thatWA,B (F ) = 0 for every compact
set F provided F ⊂ R \&. Let ε > 0. There exists a non-negative polynomial p ∈ R[x] such
that p(x) < ε for x ∈ & and p(x) > 1 for x ∈ F . Thus∫

R

p(x) dWA,B (x) � WA,B (F )

where the above inequality is in the same sense as was described at the beginning of the section.
On the other hand we have

p(At + B) < εI
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for all t ∈ [−2, 2], because σ(At + B) ⊂ & for such t . Hence∫ 2

−2
w(t)p(At + B) dt < εI.

So

WA,B (F ) < εI

for every compact set F ⊂ R \ & and every ε > 0. This shows that suppWA,B ⊂ &.
As A and B are Hermitian, & is a compact subset of the real line R. Hence suppWA,B is

compact too.
Now by polynomial approximation we have∫

R

f (x) dWA,B (x) =
∫ 2

−2
w(t)f (At + B) dt (4)

for every continuous function f ∈ C(&). Let G ⊂ R be an open non-empty subset of the real
line R such that WA,B (G) = 0 and let f ∈ C(R) be a continuous non-negative function such
that f (x) � 1 for all x ∈ R and f (x) = 0 for x ∈ R \ G. Thus

0 �
∫

R

f (x) dWA,B (x) � WA,B (G) = 0.

Hence ∫ 2

−2
w(t)f (At + B) dt = 0.

But w(t)f (At +B) is continuous and positive definite, so w(t)f (At +B) = 0 for t ∈ [−2, 2].
Hence f (x) = 0 provided x ∈ σ(At + B) for t ∈ [−2, 2]. Thus suppf ⊂ R \ &. The
above holds for every positive function f satisfying f (x) � 1 and suppf ⊂ G, so we have
G ⊂ R \ &. Hence the support of WA,B is equal to &. �

Theorem 3. Let A be a subalgebra of the algebra of all bounded operators on a Hilbert space
H. Then

WA,B(E) =
∫ 2

−2
w(t)Et (E) dt

for every Borel subset E ⊂ R, where Et is the spectral decomposition of At + B.

Proof. Let

At + B =
∫

R

λ dEt (λ). (5)

Putting (5) into (3) gives∫
R

p(x) dWA,B (x) =
∫ 2

−2
w(t)

∫
R

p(λ) dEt (λ) dt

for every polynomial p ∈ C[x]. Now by approximation of the characteristic functions we get

WA,B(E) =
∫ 2

−2
w(t)Et (E) dt

for every Borel subset E ⊂ R. �
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